Intervalo de confianza
Se llama intervalo de confianza en estadística a un par de números entre los cuales se estima que estará cierto valor desconocido con una determinada probabilidad de acierto. Formalmente, estos números determinan un intervalo, que se calcula a partir de datos de una muestra, y el valor desconocido es un parámetro poblacional. La probabilidad de éxito en la estimación se representa por 1 - α y se denomina nivel de confianza. En estas circunstancias, α es el llamado error aleatorio o nivel de significación, esto es, una medida de las posibilidades de fallar en la estimación mediante tal intervalo.1
El nivel de confianza y la amplitud del intervalo varían conjuntamente, de forma que un intervalo más amplio tendrá más posibilidades de acierto (mayor nivel de confianza), mientras que para un intervalo más pequeño, que ofrece una estimación más precisa, aumentan sus posibilidades de error.
Para la construcción de un determinado intervalo de confianza es necesario conocer la distribución teórica que sigue el parámetro a estimar, θ. Es habitual que el parámetro se distribuya normalmente. También pueden construirse intervalos de confianza con la desigualdad de Chebyshov.
En definitiva, un intervalo de confianza al 1 - α % para la estimación de un parámetro poblacional θ que sigue una determinada distribución de probabilidad, es una expresión del tipo [θ1, θ2] tal que P[θ1 ≤ θ ≤ θ2] = 1 - α, donde P es la función de distribución de probabilidad de θ.
Más acerca de intervalo de confianza http://sites.google.com/site/daimasailu/estadistica
La implementación y aplicación de los elementos de un programa de seguridad
e higiene industrial
-
*La implementación y aplicación de los elementos de un programa de
seguridad e higiene industrial *
La implementación de un programa de seguridad e higie...
Hace 7 meses
No hay comentarios:
Publicar un comentario